Source code for akvo.rsr.views.py_reports.kickstart_word_report

# -*- coding: utf-8 -*-

"""Akvo RSR is covered by the GNU Affero General Public License.

See more details in the license.txt file located at the root folder of the
Akvo RSR module. For additional details on the GNU license please
see < http://www.gnu.org/licenses/agpl.html >.
"""

import os

from akvo.rsr.models import Project, IndicatorPeriod, ProjectUpdate
from akvo.rsr.decorators import with_download_indicator
from datetime import datetime
from dateutil.relativedelta import relativedelta
from django.contrib.auth.decorators import login_required
from django.db.models import Q
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.template.loader import render_to_string
from docx import Document
from docx.shared import Mm
from docx.enum.text import WD_ALIGN_PARAGRAPH

from . import utils
from .docx_utils import load_image, add_hyperlink, set_repeat_table_header, change_orientation, markdown_to_docx


[docs]def build_view_object(project, start_date=None, end_date=None): periods = IndicatorPeriod.objects\ .select_related('indicator', 'indicator__result', 'indicator__result__project')\ .filter(indicator__result__project=project) if start_date and end_date: periods = periods.filter( Q(period_start__isnull=True) | Q(period_start__gte=start_date), Q(period_end__isnull=True) | Q(period_end__lte=end_date) ) if not periods.count(): return utils.ProjectProxy(project) return utils.make_project_proxies(periods.order_by('-period_start'))[0]
[docs]def get_project_updates(project, start_date=None, end_date=None): updates = ProjectUpdate.objects.filter(project=project) if start_date and end_date: updates = updates.filter(event_date__gte=start_date, event_date__lte=end_date) return [utils.ProjectUpdateProxy(u) for u in updates.order_by('-created_at')]
[docs]def is_empty_value(value): if not value: return True if value == '0': return True if value == 'N.A.': return True
[docs]def build_log_frame(project_view): data = [] use_baseline = False has_disaggregations = False previous_result = '' previous_indicator = '' for result in project_view.results: for indicator in result.indicators: if indicator.is_qualitative: break if not is_empty_value(indicator.baseline_value): use_baseline = True for period in indicator.periods: current_result = '' if previous_result != result.title: previous_result = result.title current_result = result.title current_indicator = '' if previous_indicator != indicator.title: previous_indicator = indicator.title current_indicator = indicator.title disaggregations = [] for d in period.disaggregations.values(): disaggregations.append({ 'label': str(d.get('type', '')), 'value': d.get('value', None) }) if len(disaggregations): has_disaggregations = True data.append({ 'result': current_result, 'type': result.iati_type_name, 'indicator': current_indicator, 'baseline_year': indicator.baseline_year if current_indicator != '' else '', 'baseline_value': indicator.baseline_value if current_indicator != '' else '', 'indicator_target': '{:,}'.format(indicator.target_value) if current_indicator != '' else '', 'period_start': period.period_start, 'period_end': period.period_end, 'target_value': int(period.target_value), 'actual_value': int(period.actual_value), 'comments': period.actual_comment, 'disaggregations': disaggregations, }) return { 'data': data, 'use_baseline': use_baseline, 'use_indicator_target': project_view.use_indicator_target, 'has_disaggregations': has_disaggregations, }
[docs]def prepare_result_title(iati_type, title): if not title: return ('', '') if not iati_type: return ('', title) head, separator, tail = title.strip().partition(':') if tail and head.split()[0] == iati_type: return ('{}: '.format(head.strip()), tail.strip()) return ('{}: '.format(iati_type), title.strip())
[docs]@login_required @with_download_indicator def render_report(request, project_id): project = get_object_or_404(Project, pk=project_id) start_date = utils.parse_date(request.GET.get('period_start', '').strip(), datetime(1900, 1, 1)) end_date = utils.parse_date(request.GET.get('period_end', '').strip(), datetime.today() + relativedelta(years=10)) project_view = build_view_object(project, start_date, end_date) project_updates = get_project_updates(project, start_date, end_date) log_frame = build_log_frame(project_view) today = datetime.today() if request.GET.get('show-html', ''): html = render_to_string('reports/project-kickstart.html', context={ 'project': project_view, 'project_updates': project_updates, 'log_frame': log_frame }) return HttpResponse(html) doc = Document(os.path.join(os.path.dirname(__file__), 'kickstart.tpl.docx')) doc.sections[0].page_width = Mm(210) doc.sections[0].page_height = Mm(297) doc.sections[0].footer.paragraphs[-1].text = 'Akvo RSR report {}'.format(today.strftime('%Y-%m-%d')) doc.add_heading(project_view.title, 0) doc.add_paragraph(today.strftime('%Y-%m-%d'), 'Subtitle') doc.add_page_break() if project_view.project_plan.strip(): doc.add_heading('Project plan', 1) markdown_to_docx(doc.add_paragraph(), project_view.project_plan.strip()) if project_view.goals_overview.strip(): doc.add_heading('Goals overview', 1) markdown_to_docx(doc.add_paragraph(), project_view.goals_overview.strip()) if project_view.target_group.strip(): doc.add_heading('Target group', 1) markdown_to_docx(doc.add_paragraph(), project_view.target_group.strip()) if project_view.project_plan_summary.strip(): doc.add_heading('Summary of project plan', 1) markdown_to_docx(doc.add_paragraph(), project_view.project_plan_summary.strip()) if project_view.background.strip(): doc.add_heading('Background', 1) markdown_to_docx(doc.add_paragraph(), project_view.background.strip()) if project_view.current_status.strip(): doc.add_heading('Situation at start of project', 1) markdown_to_docx(doc.add_paragraph(), project_view.current_status.strip()) if project.sustainability.strip(): doc.add_heading('Sustainability', 1) markdown_to_docx(doc.add_paragraph(), project_view.sustainability.strip()) doc.add_heading('Project partners', 1) partners_table = doc.add_table(rows=1, cols=2) partners_table.style = 'Table Common' partners_table.rows[0].cells[0].paragraphs[-1].add_run('Organisation name').bold = True partners_table.rows[0].cells[1].paragraphs[-1].add_run('Roles').bold = True for partner in project_view.partnerships.all(): row = partners_table.add_row() cell_p = row.cells[0].paragraphs[-1] if partner.organisation.url: add_hyperlink(cell_p, partner.organisation.url, partner.organisation.name) else: cell_p.text = partner.organisation.name row.cells[1].text = partner.iati_organisation_role_label_unicode() doc.add_paragraph('') doc.add_heading('Project budget', 1) budget_table = doc.add_table(rows=1, cols=5) budget_table.style = 'Table Common' budget_table.rows[0].cells[0].paragraphs[-1].add_run('Label').bold = True budget_table.rows[0].cells[1].paragraphs[-1].add_run('Period start').bold = True budget_table.rows[0].cells[2].paragraphs[-1].add_run('Period end').bold = True budget_table.rows[0].cells[3].paragraphs[-1].add_run('Amount').bold = True budget_table.rows[0].cells[4].paragraphs[-1].add_run('Currency').bold = True for budget in project.budget_items.all(): row = budget_table.add_row() row.cells[0].text = budget.get_label() row.cells[1].text = budget.period_start.strftime('%Y-%m-%d') if budget.period_start else '' row.cells[2].text = budget.period_end.strftime('%Y-%m-%d') if budget.period_end else '' row.cells[3].text = '{:,}'.format(budget.amount) row.cells[4].text = budget.get_currency() for num, (currency, amount) in enumerate(project.budget_currency_totals().items()): row = budget_table.add_row() if num == 0: row.cells[0].paragraphs[-1].add_run('Total').bold = True row.cells[3].paragraphs[-1].add_run('{:,}'.format(amount)).bold = True row.cells[4].paragraphs[-1].add_run(currency).bold = True doc.add_paragraph('') doc.add_heading('Summary of results', 1) markdown_to_docx( doc.add_paragraph(), 'Detail of overview of results are presented in **Appendix: Results log frame**.' 'Here, we have summarised the results in terms of progress percentage.' ) prog_form = load_image(IMG_PROGRESS_FORMULA) doc.add_picture(prog_form, width=Mm(117.5)) legend_table = doc.add_table(rows=4, cols=3) legend_table.style = 'Table Common' legend_table.rows[0].cells[0].paragraphs[-1].add_run('Legend').bold = True legend_table.rows[0].cells[0].width = Mm(20) legend_table.rows[0].cells[1].width = Mm(30) legend_table.rows[0].cells[2].width = Mm(110) legend_table.rows[1].cells[0].paragraphs[-1].add_run().add_picture(load_image(IMG_GRADE_HIGH)) legend_table.rows[1].cells[1].text = '85% - 100%' legend_table.rows[1].cells[2].text = 'Result nearly reached or reached' legend_table.rows[1].cells[0].width = Mm(20) legend_table.rows[1].cells[1].width = Mm(30) legend_table.rows[1].cells[2].width = Mm(110) legend_table.rows[2].cells[0].paragraphs[-1].add_run().add_picture(load_image(IMG_GRADE_MEDIUM)) legend_table.rows[2].cells[1].text = '50% - 84%' legend_table.rows[2].cells[2].text = 'Result partly reached' legend_table.rows[2].cells[0].width = Mm(20) legend_table.rows[2].cells[1].width = Mm(30) legend_table.rows[2].cells[2].width = Mm(110) legend_table.rows[3].cells[0].paragraphs[-1].add_run().add_picture(load_image(IMG_GRADE_LOW)) legend_table.rows[3].cells[1].text = '0% - 49%' legend_table.rows[3].cells[2].text = 'Result under reached' legend_table.rows[3].cells[0].width = Mm(20) legend_table.rows[3].cells[1].width = Mm(30) legend_table.rows[3].cells[2].width = Mm(110) doc.add_paragraph('') quantitative_table = doc.add_table(rows=1, cols=3) quantitative_table.style = 'Table Common' quantitative_table.cell(0, 0).merge(quantitative_table.cell(0, 2)) title_p = set_repeat_table_header(quantitative_table.rows[0]).cells[0].paragraphs[-1] title_p.text = 'Results and indicators (quantitative)' title_p.style = 'Heading 2' quantitative_table.rows[0].cells[0].width = Mm(160) for result in project_view.results: if not result.has_quantitative_indicators: continue row = quantitative_table.add_row() row.cells[0].merge(row.cells[2]) result_title_p = row.cells[0].paragraphs[-1] result_title_p.text = result.title result_title_p.style = 'Heading 3' row.cells[0].width = Mm(160) for indicator in result.indicators: if not indicator.is_quantitative: continue row = quantitative_table.add_row() row.cells[0].text = indicator.title progress_p = row.cells[1].paragraphs[-1] progress_p.alignment = WD_ALIGN_PARAGRAPH.RIGHT progress_p.add_run(indicator.progress_str).bold = True grade_image = IMG_GRADE_HIGH if indicator.grade == 'high' \ else IMG_GRADE_MEDIUM if indicator.grade == 'medium' \ else IMG_GRADE_LOW row.cells[2].paragraphs[-1].add_run().add_picture(load_image(grade_image)) row.cells[0].width = Mm(120) row.cells[1].width = Mm(20) row.cells[2].width = Mm(20) doc.add_paragraph('') doc.add_heading('Results and indicators (qualitative)', 2) for result in project_view.results: if not result.has_qualitative_indicators: continue for indicator in result.indicators: if not indicator.is_qualitative: continue doc.add_heading(indicator.title, 3) for period in indicator.periods: if not period.has_qualitative_data: continue doc.add_paragraph('{} to {}'.format( period.period_start.strftime('%Y-%m-%d'), period.period_end.strftime('%Y-%m-%d'))) for update in period.approved_updates: markdown_to_docx(doc.add_paragraph(), update.narrative) if update.photo: doc.add_paragraph().add_run().add_picture(load_image(update.photo_url), width=Mm(100)) if update.file: add_hyperlink(doc.add_paragraph(), update.file_url, update.file_url) doc.add_paragraph('\n\n') doc.add_heading('Project updates', 1) for project_update in project_updates: doc.add_heading(project_update.title, 2) doc.add_paragraph(project_update.created_at.strftime('%Y-%m-%d')) doc.add_paragraph().add_run().add_picture(load_image(project_update.photo_url), width=Mm(100)) markdown_to_docx(doc.add_paragraph(), project_update.text) doc.add_paragraph('\n\n') new_section = change_orientation(doc) new_section.left_margin = Mm(10) new_section.top_margin = Mm(15) new_section.right_margin = Mm(10) new_section.bottom_margin = Mm(20) doc.add_heading('Appendix: Results log frame', 1) cols = 5 if log_frame['use_baseline']: cols += 1 if log_frame['use_indicator_target']: cols += 1 if log_frame['has_disaggregations']: cols += 1 log_table = doc.add_table(rows=1, cols=cols) log_table.style = 'Table Common' log_table.rows[0].cells[0].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[0].paragraphs[-1].add_run('Result title').bold = True log_table.rows[0].cells[1].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[1].paragraphs[-1].add_run('Indicator title').bold = True cell = 2 if log_frame['use_baseline']: log_table.rows[0].cells[cell].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[cell].paragraphs[-1].add_run('Baseline').bold = True cell += 1 if log_frame['use_indicator_target']: log_table.rows[0].cells[cell].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[cell].paragraphs[-1].add_run('Target').bold = True cell += 1 log_table.rows[0].cells[cell].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[cell].paragraphs[-1].add_run('Periods').bold = True cell += 1 log_table.rows[0].cells[cell].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[cell].paragraphs[-1].add_run('Values').bold = True cell += 1 log_table.rows[0].cells[cell].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[cell].paragraphs[-1].add_run('Comments').bold = True cell += 1 if log_frame['has_disaggregations']: log_table.rows[0].cells[cell].paragraphs[-1].style = 'Normal Smaller' log_table.rows[0].cells[cell].paragraphs[-1].add_run('Disaggregations').bold = True set_repeat_table_header(log_table.rows[0]) for log in log_frame['data']: row = log_table.add_row() result_head, result_body = prepare_result_title(log['type'], log['result']) if result_body: row.cells[0].paragraphs[-1].add_run(result_head).bold = True row.cells[0].paragraphs[-1].add_run(result_body) row.cells[0].paragraphs[-1].style = 'Normal Smaller' row.cells[1].text = log['indicator'] row.cells[1].paragraphs[-1].style = 'Normal Smaller' cell = 2 if log_frame['use_baseline']: row.cells[cell].paragraphs[-1].text = 'Year:\n{}'.format(log['baseline_year']) row.cells[cell].paragraphs[-1].style = 'Normal Smaller' row.cells[cell].add_paragraph('Value:\n{}'.format(log['baseline_value']), 'Normal Smaller') cell += 1 if log_frame['use_indicator_target']: row.cells[cell].paragraphs[-1].text = log['indicator_target'] cell += 1 row.cells[cell].paragraphs[-1].text = 'Start:\n{}'.format( log['period_start'].strftime('%Y-%m-%d') if log['period_start'] else '') row.cells[cell].paragraphs[-1].style = 'Normal Smaller' row.cells[cell].add_paragraph( 'End:\n{}'.format(log['period_end'].strftime('%Y-%m-%d') if log['period_end'] else ''), 'Normal Smaller') cell += 1 if not log_frame['use_indicator_target']: row.cells[cell].paragraphs[-1].text = 'Target:\n{:,}'.format(log['target_value']) row.cells[cell].paragraphs[-1].style = 'Normal Smaller' row.cells[cell].add_paragraph('Actual:\n{:,}'.format(log['actual_value']), 'Normal Smaller') else: row.cells[cell].paragraphs[-1].text = '{:,}'.format(log['actual_value']) row.cells[cell].paragraphs[-1].style = 'Normal Smaller' cell += 1 row.cells[cell].text = log['comments'] row.cells[cell].paragraphs[-1].style = 'Normal Smaller' cell += 1 if log_frame['has_disaggregations']: for k, d in enumerate(log['disaggregations']): if k == 0: row.cells[cell].paragraphs[-1].text = '{}:\n{}'.format(d['label'], d['value']) row.cells[cell].paragraphs[-1].style = 'Normal Smaller' else: row.cells[cell].add_paragraph('{}:\n{}'.format(d['label'], d['value']), 'Normal Smaller') filename = '{}-{}-kickstart-report.docx'.format(today.strftime('%Y%b%d'), project.id) return utils.make_docx_response(doc, filename)
IMG_GRADE_HIGH = "" IMG_GRADE_MEDIUM = "" IMG_GRADE_LOW = "" IMG_PROGRESS_FORMULA = ""